From PDF Processing to ChatGPT Integration: Automating Text Extraction, NLP, and User Interface Deployment for a Smooth PDF Application Experience
We live in the world of automation and artificial intelligence; creating a chatbot that can read and interact with PDFs can be incredibly useful. Whether you need to summarize lengthy documents, answer specific questions, or extract valuable insights from PDFs, combining the power of Python with advanced natural language processing (NLP) capabilities can smoothen your workflow. This blog post will guide you through the process of building a ChatGPT for PDFs using Python. We will cover everything from PDF text extraction, setting up a conversational AI, to deploying the app with Flask, and ensuring a user-friendly interface with Tkinter.
PDFs are everywhere in the business world and hold a lot of information in a portable format. However, getting and processing data from PDFs can be difficult. By using Python’s powerful libraries and OpenAI’s GPT, we can create an interactive PDF chat application. This tool will enable users to ask questions and receive detailed responses based on the content of PDF documents.
Before we start coding, we need to set up our Python environment with the necessary libraries. Open your terminal and create a new project directory:
mkdir ChatPDFApp
cd ChatPDFApp
Create a requirements.txt file to list the libraries we need:
langchain
openai
pdfminer.six
tkinter
Then, install these libraries using pip:
pip install -r requirements.txt
Here’s the structure of our project:
ChatPDFApp/
│
├── app.py # Main application script
├── pdf_utils.py # PDF processing utilities
├── chat_utils.py # ChatGPT interaction utilities
├── ui.py # Tkinter user interface
├── requirements.txt # List of required Python libraries
└── README.md # Project description and instructions
To handle PDF text extraction, we will use pdfminer.six, a Python PDF library. Create a file named pdf_utils.py and add the following code:
import io
from pdfminer.high_level import extract_text
from pdfminer.pdfparser import PDFSyntaxError
def extract_text_from_pdf(pdf_path):
try:
text = extract_text(pdf_path)
if not text.strip():
raise ValueError("The PDF appears to be empty or contains non-text content.")
return text
except FileNotFoundError:
raise FileNotFoundError(f"The file at {pdf_path} was not found.")
except PDFSyntaxError:
raise PDFSyntaxError("Error reading the PDF file. It may be corrupted or not a valid PDF.")
except Exception as e:
raise Exception(f"An unexpected error occurred: {str(e)}")
Let’s break down the provided text and code step by step:
This section explains how to extract text from PDF files using a Python library called pdfminer.six.
pdf_utils.py. This file will contain the code for extracting text from PDFs.
import io
from pdfminer.high_level import extract_text
from pdfminer.pdfparser import PDFSyntaxError
The code imports necessary modules from the pdfminer.six library. extract_text is a function used to extract text from PDF files, and PDFSyntaxError is an exception that handles syntax errors in PDFs.
def extract_text_from_pdf(pdf_path):
try:
text = extract_text(pdf_path)
if not text.strip():
raise ValueError("The PDF appears to be empty or contains non-text content.")
return text
except FileNotFoundError:
raise FileNotFoundError(f"The file at {pdf_path} was not found.")
except PDFSyntaxError:
raise PDFSyntaxError("Error reading the PDF file. It may be corrupted or not a valid PDF.")
except Exception as e:
raise Exception(f"An unexpected error occurred: {str(e)}")
The function extract_text_from_pdf is defined to take a single argument pdf_path, which is the path to the PDF file.
Try Block: The try block attempts to extract text from the PDF file.
extract_text(pdf_path): This function call extracts the text content from the PDF file located at pdf_path.ValueError is raised with an appropriate message.These blocks handle various potential errors:
pdf_path is not found.This setup allows you to create a utility for extracting text from PDF files in a reliable and error-handling manner, which is essential for building more complex applications like a chatbot that can interact with PDF content.
Next, we need to integrate our PDF text extraction with OpenAI’s GPT. Create a file named chat_utils.py:
from langchain import OpenAI, ConversationChain
def initialize_conversation(api_key):
llm = OpenAI(api_key=api_key)
conversation = ConversationChain(llm=llm)
return conversation
def chat_with_pdf(conversation, pdf_text, user_query):
prompt = (f"You are an AI assistant. Below is the content of a PDF document:\n\n"
f"{pdf_text}\n\n"
f"User query: {user_query}\n\n"
f"Please provide a detailed response based on the document content.")
try:
response = conversation.generate(prompt)
return response
except Exception as e:
raise Exception(f"An error occurred while generating the response: {str(e)}")
let’s break down the provided text and code for integrating Natural Language Processing (NLP) with OpenAI’s GPT to interact with the text extracted from PDFs.
Purpose: This section explains how to integrate the text extracted from PDF files with OpenAI’s GPT model to create an interactive chat experience.
Create a file: You need to create a new Python file named chat_utils.py. This file will contain the code for initializing the conversation with GPT and handling user queries based on PDF content.
from langchain import OpenAI, ConversationChain
langchain library. OpenAI is used to interact with OpenAI’s GPT, and ConversationChain manages the conversation flow.
def initialize_conversation(api_key):
llm = OpenAI(api_key=api_key)
conversation = ConversationChain(llm=llm)
return conversation
initialize_conversation:api_key as an argument, which is your API key for accessing OpenAI’s GPT.OpenAI(api_key=api_key) initializes the connection to OpenAI using the provided API key.ConversationChain(llm=llm) creates a conversation chain using the initialized OpenAI model.conversation object.
def chat_with_pdf(conversation, pdf_text, user_query):
prompt = (f"You are an AI assistant. Below is the content of a PDF document:\n\n"
f"{pdf_text}\n\n"
f"User query: {user_query}\n\n"
f"Please provide a detailed response based on the document content.")
try:
response = conversation.generate(prompt)
return response
except Exception as e:
raise Exception(f"An error occurred while generating the response: {str(e)}")
chat_with_pdf:conversation: The conversation object initialized by initialize_conversation.pdf_text: The text extracted from the PDF document.user_query: The user’s query or question based on the PDF content.conversation.generate(prompt) uses the conversation object to generate a response based on the prompt.This setup enables you to create a conversational interface that can intelligently respond to user queries based on the content of PDF documents. The integration of PDF text extraction and GPT provides a powerful tool for automated document analysis and interaction.
For a user-friendly interface, we’ll use Tkinter. Create a file named ui.py:
import tkinter as tk
from tkinter import filedialog, scrolledtext, messagebox
from pdf_utils import extract_text_from_pdf
from chat_utils import initialize_conversation, chat_with_pdf
class ChatPDFApp:
def __init__(self, root, api_key):
self.root = root
self.root.title("ChatPDF Application")
self.api_key = api_key
self.conversation = initialize_conversation(api_key)
self.pdf_text = ""
self.setup_ui()
def setup_ui(self):
self.select_pdf_button = tk.Button(self.root, text="Select PDF", command=self.load_pdf)
self.select_pdf_button.pack(pady=10)
self.query_label = tk.Label(self.root, text="Enter your query:")
self.query_label.pack(pady=5)
self.query_entry = tk.Entry(self.root, width=50)
self.query_entry.pack(pady=5)
self.ask_button = tk.Button(self.root, text="Ask", command=self.ask_question)
self.ask_button.pack(pady=10)
self.response_text = scrolledtext.ScrolledText(self.root, wrap=tk.WORD, width=80, height=20)
self.response_text.pack(pady=10)
def load_pdf(self):
file_path = filedialog.askopenfilename(filetypes=[("PDF files", "*.pdf")])
if file_path:
try:
self.pdf_text = extract_text_from_pdf(file_path)
messagebox.showinfo("Success", "PDF loaded successfully!")
except Exception as e:
messagebox.showerror("Error", str(e))
def ask_question(self):
user_query = self.query_entry.get()
if not user_query:
messagebox.showwarning("Warning", "Please enter a query.")
return
if not self.pdf_text:
messagebox.showwarning("Warning", "Please load a PDF first.")
return
try:
response = chat_with_pdf(self.conversation, self.pdf_text, user_query)
self.response_text.insert(tk.END, f"Q: {user_query}\nA: {response}\n\n")
except Exception as e:
messagebox.showerror("Error", str(e))
if __name__ == "__main__":
root = tk.Tk()
api_key = "your_openai_api_key" # Replace with your actual OpenAI API key
app = ChatPDFApp(root, api_key)
root.mainloop()
let’s break down the provided text and code for building a user-friendly interface using Tkinter to interact with PDFs and OpenAI’s GPT.
ui.py. This file will contain the code for the GUI.
import tkinter as tk
from tkinter import filedialog, scrolledtext, messagebox
from pdf_utils import extract_text_from_pdf
from chat_utils import initialize_conversation, chat_with_pdf
tk, filedialog, scrolledtext, messagebox). It also imports functions from the previously created pdf_utils and chat_utils files.
class ChatPDFApp:
def __init__(self, root, api_key):
self.root = root
self.root.title("ChatPDF Application")
self.api_key = api_key
self.conversation = initialize_conversation(api_key)
self.pdf_text = ""
self.setup_ui()
ChatPDFApp:__init__): Initializes the main application window.root: The main Tkinter window.api_key: The API key for OpenAI.setup_ui method to create the user interface components.
def setup_ui(self):
self.select_pdf_button = tk.Button(self.root, text="Select PDF", command=self.load_pdf)
self.select_pdf_button.pack(pady=10)
self.query_label = tk.Label(self.root, text="Enter your query:")
self.query_label.pack(pady=5)
self.query_entry = tk.Entry(self.root, width=50)
self.query_entry.pack(pady=5)
self.ask_button = tk.Button(self.root, text="Ask", command=self.ask_question)
self.ask_button.pack(pady=10)
self.response_text = scrolledtext.ScrolledText(self.root, wrap=tk.WORD, width=80, height=20)
self.response_text.pack(pady=10)
setup_ui:load_pdf method.ask_question method.
def load_pdf(self):
file_path = filedialog.askopenfilename(filetypes=[("PDF files", "*.pdf")])
if file_path:
try:
self.pdf_text = extract_text_from_pdf(file_path)
messagebox.showinfo("Success", "PDF loaded successfully!")
except Exception as e:
messagebox.showerror("Error", str(e))
load_pdfextract_text_from_pdf to extract text from the selected PDF.
def ask_question(self):
user_query = self.query_entry.get()
if not user_query:
messagebox.showwarning("Warning", "Please enter a query.")
return
if not self.pdf_text:
messagebox.showwarning("Warning", "Please load a PDF first.")
return
try:
response = chat_with_pdf(self.conversation, self.pdf_text, user_query)
self.response_text.insert(tk.END, f"Q: {user_query}\nA: {response}\n\n")
except Exception as e:
messagebox.showerror("Error", str(e))
ask_questionchat_with_pdf to generate a response based on the PDF content and user query.
if __name__ == "__main__":
root = tk.Tk()
api_key = "your_openai_api_key" # Replace with your actual OpenAI API key
app = ChatPDFApp(root, api_key)
root.mainloop()
"your_openai_api_key" with your actual OpenAI API key.ChatPDFApp with the root window and API key.This setup provides a complete GUI for loading PDF files, entering user queries, and displaying responses generated by OpenAI’s GPT, making it a user-friendly application for interacting with PDF documents.
For broader accessibility, we can deploy our application as a web app using Flask. First, install Flask:
pip install Flask
app.py for the Flask application:
from flask import Flask, request, jsonify, render_template
from pdf_utils import extract_text_from_pdf
from chat_utils import initialize_conversation, chat_with_pdf
app = Flask(__name__)
api_key = "your_openai_api_key"
conversation = initialize_conversation(api_key)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload_pdf():
file = request.files['file']
if file:
try:
pdf_text = extract_text_from_pdf(file)
return jsonify({'pdf_text': pdf_text}), 200
except Exception as e:
return jsonify({'error': str(e)}), 400
return jsonify({'error': 'No file provided'}), 400
@app.route('/ask', methods=['POST'])
def ask_question():
data = request.json
pdf_text = data.get('pdf_text', '')
user_query = data.get('user_query', '')
if not pdf_text or not user_query:
return jsonify({'error': 'PDF text and user query are required'}), 400
try:
response = chat_with_pdf(conversation, pdf_text, user_query)
return jsonify({'response': response}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == "__main__":
app.run(debug=True)
let’s break down the provided code for creating a Flask application that allows users to upload PDF files and interact with their content using OpenAI’s GPT
from flask import Flask, request, jsonify, render_template
from pdf_utils import extract_text_from_pdf
from chat_utils import initialize_conversation, chat_with_pdf
Flask, request, jsonify, render_template are imported from the flask library to handle web requests and responses.extract_text_from_pdf, initialize_conversation, and chat_with_pdf are imported from the previously created utility files.
app = Flask(__name__)
api_key = "your_openai_api_key"
conversation = initialize_conversation(api_key)
"your_openai_api_key" with your actual API key).
@app.route('/')
def index():
return render_template('index.html')
/index.html template (assumed to be a simple HTML file for the web interface).
@app.route('/upload', methods=['POST'])
def upload_pdf():
file = request.files['file']
if file:
try:
pdf_text = extract_text_from_pdf(file)
return jsonify({'pdf_text': pdf_text}), 200
except Exception as e:
return jsonify({'error': str(e)}), 400
return jsonify({'error': 'No file provided'}), 400
/uploadThis route handles POST requests for uploading PDF files.request.files['file'] retrieves the uploaded file from the request.
File Processing:
extract_text_from_pdf.No File Provided: Returns an error message as a JSON response with a 400 status code.
@app.route('/ask', methods=['POST'])
def ask_question():
data = request.json
pdf_text = data.get('pdf_text', '')
user_query = data.get('user_query', '')
if not pdf_text or not user_query:
return jsonify({'error': 'PDF text and user query are required'}), 400
try:
response = chat_with_pdf(conversation, pdf_text, user_query)
return jsonify({'response': response}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
/askThis route handles POST requests for asking questions based on the PDF content.
Retrieve Data:
request.json retrieves the JSON data sent in the request.pdf_text and user_query from the JSON data.Validation:
pdf_text or user_query is missing, returns an error message with a 400 status code.Generate Response:
chat_with_pdf to generate a response based on the provided PDF text and user query.
if __name__ == "__main__":
app.run(debug=True)
Main Block
This setup provides a web-based application where users can upload PDF files, extract text from them, and ask questions based on the content, receiving responses generated by OpenAI’s GPT model.
Create a templates folder and add index.html:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>ChatPDF App</title>
</head>
<body>
<h1>ChatPDF Application</h1>
<form id="pdfForm" enctype="multipart/form-data">
<input type="file" name="file" id="fileInput" accept=".pdf">
<button type="button" onclick="uploadPDF()">Upload PDF</button>
</form>
<div id="pdfTextContainer" style="display:none;">
<h2>PDF Text</h2>
<pre id="pdfText"></pre>
<h2>Ask a Question</h2>
<input type="text" id="queryInput">
<button type="button" onclick="askQuestion()">Ask</button>
<div id="responseContainer">
<h3>Response</h3>
<p id="responseText"></p>
</div>
</div>
<script>
async function uploadPDF() {
const fileInput = document.getElementById('fileInput');
const formData = new FormData();
formData.append('file', fileInput.files[0]);
const response = await fetch('/upload', {
method: 'POST',
body: formData
});
const data = await response.json();
if (response.ok) {
document.getElementById('pdfText').textContent = data.pdf_text;
document.getElementById('pdfTextContainer').style.display = 'block';
} else {
alert(data.error);
}
}
async function askQuestion() {
const pdfText = document.getElementById('pdfText').textContent;
const userQuery = document.getElementById('queryInput').value;
const response = await fetch('/ask', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({ pdf_text: pdfText, user_query: userQuery })
});
const data = await response.json();
if (response.ok) {
document.getElementById('responseText').textContent = data.response;
} else {
alert(data.error);
}
}
</script>
</body>
</html>For scanned PDFs, you might need Optical Character Recognition (OCR). Using pytesseract, we can add OCR capabilities. Install pytesseract and Pillow:
pip install pytesseract Pillow
pdf_utils.py:
import io
from pdfminer.high_level import extract_text
from pdfminer.pdfparser import PDFSyntaxError
from PIL import Image
import pytesseract
def extract_text_from_pdf(pdf_path):
try:
text = extract_text(pdf_path)
if not text.strip():
raise ValueError("The PDF appears to be empty or contains non-text content.")
return text
except FileNotFoundError:
raise FileNotFoundError(f"The file at {pdf_path} was not found.")
except PDFSyntaxError:
raise PDFSyntaxError("Error reading the PDF file. It may be corrupted or not a valid PDF.")
except Exception as e:
raise Exception(f"An unexpected error occurred: {str(e)}")
def ocr_pdf_images(pdf_path):
try:
images = convert_from_path(pdf_path)
text = ""
for image in images:
text += pytesseract.image_to_string(image)
return text
except Exception as e:
raise Exception(f"An error occurred during OCR processing: {str(e)}")
In this blog post, we’ve built a comprehensive ChatGPT application for PDFs using Python. We’ve covered how to extract text from PDFs, integrate NLP using OpenAI’s GPT, create a user-friendly interface with Tkinter, and deploy the app using Flask. Additionally, we enhanced the application with OCR capabilities for handling scanned PDFs.
By following these steps, you can develop a powerful tool for interacting with PDF documents, making it easier to extract and process valuable information. This application demonstrates the flexibility and capability of Python when combined with modern AI technologies.
After debugging production systems that process millions of records daily and optimizing research pipelines that…
The landscape of Business Intelligence (BI) is undergoing a fundamental transformation, moving beyond its historical…
The convergence of artificial intelligence and robotics marks a turning point in human history. Machines…
The journey from simple perceptrons to systems that generate images and write code took 70…
In 1973, the British government asked physicist James Lighthill to review progress in artificial intelligence…
Expert systems came before neural networks. They worked by storing knowledge from human experts as…
This website uses cookies.